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1 Introduction
We investigate the effects of sewer access on census tract population density,

literacy rate, and mean income in developing world cities. Our estimates are
based on a quasi-experimental research design that derives from principles of
wastewater engineering. Because it is more difficult to move sewage uphill than
downhill, otherwise similar census tracts on opposite sides of drainage basin
divides sometimes face different costs of sewer access. We use this intuition, and
census tract level data, to estimate the effects of treating census tracts with better
sewer access. We identify treatment effects by comparing rates of sewer access
and outcomes for census tracts on opposite sides of drainage basin divides in
Brazil, Colombia, South Africa, Jordan, and Tanzania. We use these estimates to
evaluate the impact of sewers on a sample of large cities in these same countries.

We provide two types of estimates. The first is a conventional tsls/iv. At the
census tract level, our treatment variable, share of households with sewer access,
is continuous. This means that, outside of a homogeneous treatment effect
framework, the tsls/iv late involves an average of treatment effects that is not
obviously of economic interest. To address this issue, we note that at the parcel
level our treatment effect is binary. A parcel either has sewer access or not. We
exploit this observation to estimate a parcel level mte/liv model with census
tract level data by using a small variance approximation (Chesher, 1991). Unlike
the tsls/iv estimand, the interpretation of the mte/liv based estimand is simple
and economically meaningful. It is the census tract average of the parcel level
effect of sewer access. In practice, the magnitude of the tsls/iv and mte/liv

estimates are about the same.
Our preferred estimates indicate that increasing the number of sewer

connections in a census tract by 1% increases population density by about 6%.
Using this estimate to evaluate small counterfactual sewer expansions suggests
that expanding sewer networks has about equal, but opposite, effects on urban
density as large expansions of transportation networks. We also find that sewer
access has only small effects on tract mean income and literacy. This suggests
that sewers make a neighborhood more attractive to people like those who
already live there. Sewer access does not lead to the displacement of poor slum
dwellers by more affluent newcomers or to other dramatic shifts in tract
demographics.
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The economic logic of cities is simple. We are more productive if we work at
higher densities than we can tolerate in our residences. Cities arise as the joint
arrangement of work and residence locations that allows higher employment
and lower residential density. Stated in this way it is natural that researchers
focus their attention on how transportation infrastructure affects the
development of cities. However, our willingness to tolerate density is also
fundamental to how cities are organized, and the ability of infrastructure to
facilitate density, as opposed to mobility, has received little attention from
researchers. Sewer access has obvious implications for our willingness to tolerate
population density, and so this paper begins the study of the importance of
infrastructure that facilitates population density for the development of cities.

According to the World Bank, about one third of the world’s urban
population did not have access to safely managed sanitation facilities in 2020,
about the same proportion as live in slum conditions. Given the impact of safely
managed sanitation on health and mortality, the need for improved sewer access
is urgent, and improving such access is one of the United Nations’ “Millenium
Development Goals.” Yet, many cities also lack decent roads, sufficient public
transit, adequate schools, and reliable electricity. Trade-offs between these
services must be evaluated and made. Our finding that improved sewer access
causes economically large increases in density but does not precipitate the
arrival of more affluent migrants, should be of immediate use to policy makers
evaluating such trade-offs.

Urban migration is among the best known ways to increase individual wages
in developing countries (Gibson et al., 2014, Lagakos et al., 2020). Henderson
and Turner (2020) estimate that for a typical resident of the developing world,
moving to a location that is twice as dense increases household incomes by 32%.
This leads us to ask why developing world countries are not urbanizing faster.
One possibility is that developing world cities are difficult places to live, in part
because they often lack basic sanitation. Our results strongly support this
conclusion. Our results suggest that, by facilitating increased population density,
improved sewer access can allow cities to accommodate more of the the rural
poor. Indeed, by providing estimations of the magnitude of the effect of sewers
on population density, we are providing a foundation for the cost-benefit
analysis of sewer expansions that includes benefits to rural migrants.
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Despite its importance, the effect of sewer access on urban development has
received little attention from researchers. There appear to be two reasons for
this. First is the difficulty in organizing systematic descriptions of sewer
networks. Sewers are underground, often old, and often administered locally, all
factors that increase the difficulty of data collection. Second is the fact that
sewers are not assigned to places at random, and the literature has failed to
develop a quasi-experimental research design to address this problem that can
be widely applied. We solve both problems. We exploit GIS technology to
develop a quasi-experimental design using widely available census data and
universally available digital elevation maps.

2 Literature
There is a large literature studying the effects of urban infrastructure. For

example, Jedwab and Storeygard (2022) and Ghani et al. (2016) study the effects
of highways and roads in India and Africa; Tsivanidis (2019) studies the effects
of bus rapid transit in Bogota; Gendron-Carrier et al. (2022) studies the effects of
subways all over the world; and finally, Allcott et al. (2016) and Lipscomb et al.
(2013) study the effects of electrification in India and Brazil.

There is also a literature studying the effect of water quality on health
outcomes, usually infant and child mortality, in the developing world (e.g.,
Ashraf et al. (2017), Galiani et al. (2005), Bhalotra et al. (2021)) and in the
developed world during the industrial revolution (e.g., Anderson et al. (2018),
Ferrie and Troesken (2008), Kesztenbaum and Rosenthal (2017), Ogasawara and
Matsushita (2018)). These studies usually find large effects of improved water
quality on health and mortality.

Studies of sewers are rarer. Alsan and Goldin (2019) study late 19th century
Boston and find a large reductions in infant mortality from the joint roll-out of
municipal water and sewer systems, but no evidence that people sorted into
places with better water and sewer service on the basis of observable
demographics. Anderson et al. (2018) examine the effect of sewer system
construction in 25 US cities in the early 1900s and, contrary to Alsan and Goldin
(2019), find no relationship between measures of mortality and sewage treatment
or the interaction of sewage treatment and water treatment.

To our knowledge, Gamper-Rabindran et al. (2010) is the only paper to
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explicitly study urban sewer systems in the developing world. This paper
considers a municipality-year panel of Brazilian data reporting infant mortality
and municipal level measures of water and sewer access. They find that access to
piped water, but not to sewers, has a large effect on infant mortality. Only Coury
et al. (2022) explicitly considers the relationship between sewer construction and
urban development. Coury et al. (2022) investigates the effect of expansions of
the Chicago water and sewer network in the late 19th century on the price of
residential land. They find that sewer and water access more than doubles land
prices.

Summing up, the available evidence suggests that sewer access has beneficial
effects on cities and neighborhoods. The evidence for more specific effects is thin
and based on 19th century US cities. Coury et al. (2022) find that sewer access
leads to large increases in land prices in late 19th century Chicago. It is natural
to suspect that these prices increases were associated with an increase in density.
Extrapolating from the Alsan and Goldin (2019) finding that people do not sort
on the basis of local variation in municipal water and sewer service suggests that
people should not sort on the basis of sewer access. However, there is little
evidence about the magnitudes of these effects in contemporary developing
world cities, or about heterogeneity in these effects across places. These are the
questions we address.

3 Identification
The movement of wastewater in sewers is special in two regards. First, it is

sensitive to variation in elevation that is irrelevant for most other activities.
Gravity sewers require a grade of about 1:200 (1 unit of drop per 200 of
horizontal). While the details of pipe size, shape, and interior smoothness can
partially compensate for vertical drop, in general, at a grade of about 1:200 solids
settle out of the flow and block the pipe (Mara, 1996). For reference, athletes will
generally perceive a playing field as sloped only once it has a grade of more than
1:70 (Aldous, 1999).

Second, unlike people, wastewater only travels away from a residence. Thus,
commuting should respond symmetrically to elevation change on the outbound
and inbound trips, but sewers should respond asymmetrically. For household
wastewater, only elevation gain outbound is costly.
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Figure 1: Identifying treatment effects around a stylized basin boundary

(a) (b)

(c) (d)

Note: Elevation and sewer share profile in the neighborhood of a drainage basin divide. The basin
divide is at the top of the hill, at x = 0. Displacement left is “inside” and towards the nearest
established sewer system. Displacement right is “outside” and wastewater in this region must
travel uphill to reach the nearest sewer network. (a) Crossing the basin divide is a discrete shock
to the cost of sewer access. (b) Crossing the divide increases the cost of sewer access continuously
with distance to divide. (c) Same as (b) but x displacement has an independent effect on sewer
access. (d) Illustration of variation in elevation independent of x.

These two facts motivate the identification strategy illustrated in figure 1.
The peaked dark line in this figure describes the elevation profile along an axis
horizontal to a drainage basin divide at x = 0. The region to the left of x = 0 is
“inside” the central city drainage basin and drains downhill to the sewer system
servicing the CBD. The region to the right of x = 0 is “outside” and cannot reach
the central city sewer network without travelling uphill.

Moving sewage across a basin divide is difficult and may be accomplished in
three ways (Mara, 1996). First, by burying sewer pipes more deeply, the grade of
the sewer pipe can diverge from that of the ground above. Recalling that a sewer
needs a grade of 1:200, burying a sewer to a depth of eight feet instead of two
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can allow an extra 1200 feet of horizontal travel. Second, if the topography
allows, following an indirect route approximately along an elevation contour to
reach the inside of the basin allows the substitution of downhill, horizontal travel
for climbing. Third, building pumping facilities to lift the sewage over the basin
divide is also possible. This requires the availability of electric or fossil fuel
powered pumps. If the land outside the central basin is sufficiently valuable,
there is also the possibility of building a new sewer network to serve the relevant
drainage basin and to avoid moving sewage up and across a basin divide
altogether. All four possibilities are costly. Crossing a drainage basin divide from
a basin with sewer service to one without increases the cost of sewer access.

Summing up, for places on the outside of a drainage basin divide, the cost of
reaching the central city sewer network should increase rapidly with the
horizontal and vertical distance that sewage must cover to reach the basin divide
(from which it can drain downhill to the central city sewer network). Conversely,
for places on the inside of the basin divide, horizontal and vertical displacement
from the divide should have less impact on the cost of sewer access, or none at
all.

As we will see, drainage basin divides are usually almost unnoticeable
landscape features. From this it follows that locations close to, but on opposite
sides of a drainage basin divide should be similar in their suitability for urban
use, except that sewers will be more costly for outside locations. This suggests
that for a sample of locations close to a drainage basin divide, being inside or
outside the basin is a source of quasi-random variation in the cost of sewers. Our
research design is organized around comparing census tract level sewer access
and demographics in nearby tracts on opposite sides of a drainage basin divide.

The four panels of figure 1 inform the exercise of translating this intuition
into an econometric specification. The horizontal axis, x, is displacement along a
horizontal axis perpendicular to a drainage basin divide, henceforth simply
“horizontal displacement.” In all four panels, locations to the left of zero are
inside and are uphill from the sewer system serving the central city. Locations to
the right are outside, and sewage in these locations must travel horizontally and
vertically to the basin divide before it can drain to the center.

Define a binary variable 1(Outside)(x) equal to one for x outside, and zero
otherwise. Let s indicate the share of households in a location with sewer access,
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and define ∆h(x) ≥ 0 as meters of descent required to reach x from the top of
the basin divide at x = 0. Thus, 1(Outside)(x)x and 1(Outside)(x)∆h(x) are the
horizontal and vertical displacement required to reach the inside of the central
drainage basin from location x. We consider 1(Outside)(x), 1(Outside)(x)x, and
1(Outside)(x)∆h(x) as instruments.

Our measure of sewer access is the share of households in a census tract
reporting that they have access to a public sewer. The size of census tracts varies
by country, but they are usually at least one half kilometer square. At this scale,
it is possible that the cost shock to sewer construction will appear instantaneous
when we cross the basin divide. This case is illustrated in panel (a). In this
figure, we suppose that sewer share, s, does not depend on x, except at the basin
divide, where the cost of sewer access increases, and the share of houses
reporting access to a sewer declines as a step function.

We would like to estimate how an outcome Y depends on sewer access. If
panel (a) is an accurate description of the world, then we can do this by
comparing the size of the step down in sewer access at x = 0 to the
corresponding change in Y .

However, it is hard to have a strong prior about the spatial scale over which
the basin divide cost shock will operate and there are reasons to think that it will
not operate as sharply as illustrated in panel (a). The area near a drainage basin
divide is often quite flat. Moving a few hundred horizontal feet outside of the
basin divide may involve only a foot or two of drop. Because each foot of vertical
drop allows about 200 feet of horizontal travel, in flat terrain, burying a sewer
eight feet deep rather than two allows about an extra 1200’ of access. Moreover,
we probably measure the locations of basin divides imprecisely, so measurement
error should smooth out the empirical counterpart of figure 1(a). In either case,
we expect sewer access to decline smoothly with distance to the basin divide.

The case when sewer access declines continuously as we move progressively
further outside the the central basin is illustrated in figure 1(b). The intuition
behind panels (a) and (b) is similar, but the implied econometric model is not.
Panel (a) can be described by a discrete instrument, and a discrete treatment. In
panel (b) the cost shock increases in distance, as does the resulting change in
sewer share, so instrument and treatment are both continuous. The econometrics
of estimating treatment effects with continuous and binary treatments are quite
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different.
Figure 1(c) illustrates one of the main challenges to our identification

strategy. By construction, each central basin encircles the center of the city it
contains. Thus, displacement inside is usually towards the city center and
conversely. As we move towards the center, we expect land to become more
valuable and more intensively developed. Assuming the cost shock to sewers
operates continuously, as illustrated in figure 1(c), we expect a steady decline in
sewer share as we move from left to right, away from the city center, with a trend
break and more rapid decline once we cross the basin divide.

Figure 1(d) illustrates a final point about our identification strategy and
suggests a different instrumental variable. In reality, and unlike what we
illustrate in the first three panels, our data will lie on a strip rather than a line.
This means that there will be variation in elevation, holding distance to the basin
divide constant. Therefore, we can estimate the effect of elevation on sewer
access, conditional on x. Holding x constant, we expect vertical displacement to
have a larger effect on sewer access outside the basin divide than inside.

4 Central Basins
We now turn to the problem of defining an empirical analog to the

illustrations in figure 1, and to defining “inside” and “outside.”
Figure 2 describes the intuition behind our approach. The central ellipse in

this figure describes the drainage basin containing a central city with a sewer
system. This is the “central basin.” All points in this basin drain to the same
point, and so, in principal, can be served by the same sewer network. Any point
not in the central basin, by construction, does not drain to this point. The
boundary of the central basin is the central basin divide and a location is
“inside” or “outside” as it lies inside or outside the central basin.

To construct central basins, we begin with the un desa World Urbanization
Prospects data. These data report the coordinates of the centers of all cities that
have a population of 300,000 or above in 2018 (un desa Population Division,
2018). We restrict attention to the cities in countries where we have census data
and maps: Brazil, South Africa, Tanzania, Jordan, and Colombia.

We next download the Advanced Spaceborne Thermal Emission and
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Figure 2: Illustration of basins, segments, radial-bins, and “inside” indicator

Note: The central ellipse describes the drainage basin containing a center city. The boundary of
this drainage basin is the central basin divide. A location is “inside” or “outside” as it lies inside
or outside the central basin. The central basin generally abuts other drainage basins. The portion
of the central basin divide which divides a particular pair of basins is a “segment” of the basin
divide. We divide the area near the basin divide into “radial-bins”(sometimes “π-bins”). To
construct these bins, we divide the central basin divide into two kilometer long intervals, starting
from the point on the basin divide nearest the city center. A radial-bin is the area within 2km of
one such interval.

Reflection Radiometer (aster) (nasa/meti/aist/Japan Spacesystems and
us/Japan aster Science Team, 2019) digital elevation map. These data report the
elevation of most of the Earth’s surface at a spatial resolution of about 30m2.

From the aster data, we clip out a circle of radius 75km centered on the cbd

of each sample city. Each such circle is an elevation map of one of our cities and
its hinterlands. This done, we draw all drainage basins within a 75km radius of
the center of each city using an ArcGIS utility. Finally, we identify the drainage
basin containing the center of each city. These are the central basins, and their
boundaries are the central basin divides.

We will ultimately rely on census data at the tract level to describe sewer
access and outcome variables, and our unit of observation will be a census tract.
We include in our sample only census tracts for which the closest basin divide is
the central basin divide for one of the cities in the un desa data. Our research
design is organized around comparisons of census tracts on opposite sides of
central basin divides.

We define a census tract as inside or outside depending on whether its area
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Figure 3: Drainage basins containing Cascavel, Brazil

Note: Dashed Red lines indicate drainage basins boundaries based on the aster digital elevation
map. The solid red line indicates the basin boundary for the basin containing Cascavel, Brazil.
virrs lights at night shows city extent. The disk has a radius of 75km.

weighted centroid is on the same side of the closest basin divide as the central
business district contained in all of our central basins. To be included in the un

data a city must have a population of at least 300k. As a result, all central cities
in our sample have at least some sewer service.1 Therefore, this definition
guarantees that an inside census tract can drain to a central city sewer network.

Figure 3 illustrates basin boundaries around Cascavel, Brazil, and is an
empirical analog of figure 2. Red dashed lines indicate the boundaries of all
drainage basins, and solid red shows the boundary of the central basin. Shading
is based on lights at night and shows the scale of the city relative to the various
basins.

In figures 2 and 3, each central basin abuts other drainage basins. The
portion of the central basin divide which divides a particular pair of basins is a
“segment” of the basin divide. For econometric purposes discussed later, we

1We experimented with using lights-at-night weighted tract centroids and found that it did not
have an important effect on our results.
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divide each central basin divide into these segments. We also divide the area
near the basin divide into “radial-bins,” which we sometimes abbreviate to
“π-bins.” To construct these bins, we divide the central basin divide into two
kilometer long intervals, starting from the point on the basin divide nearest the
city center. A radial-bin consists of all census tracts with centroids within 2km of
one such 2km interval. We define “segment-bins” analogously on the basis of
basin segments rather than two kilometer intervals.

In our preferred regression specification below, no radial-bin containing
fewer than three census tract centroids can contribute to the identification of the
causal effect of sewer access. In order to assure that less restrictive specifications
and descriptive statistics describe the same variation in the data, we generally
drop any tract that lies in a radial-bin containing fewer than three tract centroids.

Because two central basins may be adjacent, our notion of inside and outside
can be undefined. There are two natural solutions to this problem. The first is to
exclude all such tracts from our sample. Alternatively, for tracts for which the
closest basin divide segment divides two central basins, define inside and
outside on the basis of the closest of the two city centers. We experiment with
both strategies and our results are robust to either definition. However, when
this situation arises, on average, the more remote cbd is three times as far away
as the closer one. Therefore, while this notion of inside and outside can be
ambiguous in theory, it is rarely ambiguous in practice. Given this, we report
results based on the larger sample.

Looking carefully at figure 3, we see that our basin drawing algorithm
sometimes constructs incoherent basins at the edge of the map disc. For this
reason, we exclude from our study the region within 6km of the edge of these
discs, or conversely, more than 69km from the center of the city.

The drainage basins that contain the coordinate of the cbd for our cities are
sometimes too small to contain a meaningful share of the city’s population (recall
the un desa data reports on cities with a population above 300,000). This is a
particular problem for cities near the coast, where the basin drawing algorithm
tends to construct small basins. To see why this creates a problem consider two
central basin segments, one about 100 meters from the cbd, and one 10km from
the cbd. For the first, displacement inside the basin divide is displacement
towards the cbd for about the first 100 meters, and then it is displacement
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beyond and away from the cbd. In the second case, displacement away from and
inside the basin divide is towards the cbd for about 10km. Pooling these two
types of basin divides complicates the interpretation of horizontal displacement.
To resolve these problems, we define our central basins as the union of drainage
basins that intersect a disk of 2km radius centered on the cbd. This guarantees
that no point on the central basin divide is closer to the cbd than 2km.

A problem may arise when small towns lie close to, but outside a central
basin divide, and are far from the main cbd. If these small towns have sewer
networks, then for census tracts close to these small towns, being inside the
central basin probably places them farther from the nearest sewer network. We
experimented with alternative definitions of inside that address this problem.
These alternatives face the following problem. We can only measure sewer access
with the same census data that we use to define our treatment. Thus, picking out
small, highly sewered towns, near the basin divide relies on the same data we
use to construct our treatment variable. Therefore, any definition of inside based
on these data implicitly requires that we condition on an endogenous variable.
Given this, we do not pursue alternative definitions of inside and outside.

5 Sewers and outcomes
The Brazilian census asks households if they have a toilet, and whether this

toilet drains to a sewer, septic tank, a ditch, a pit, or surface water. In this way,
the census provides an indicator of “connected to a sewer.” These data are
publicly available, aggregated to the “sector” (about the same size as a US
census block group). Equivalent questions appear in the census forms of
Colombia, Tanzania, Jordan, and South Africa. Appendix B provides more detail
about these census questions. These questions allow us to calculate the share of
households in a census tract with access to a sewer for our entire sample of
tracts. This is our treatment variable, and we would like to know the effects of
changes in the share of tract households with sewer access.

It remains to calculate the vertical distance between each tract and the central
basin divide. For this purpose, we calculate the height of the basin divide for
each tract as the highest elevation of any tract centroid in the same radial-bin as
the target tract. We then calculate the vertical rise required to reach the basin
divide, ∆h(x), as the elevation difference between the target tract centroid and
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Figure 4: Sewer share and “inside/outside” around Cascavel, Brazil

Note: Full basin and close up of Cascavel, Brazil. Darker blue indicates a larger share of
households reporting a toilet connected to a public sewer. Dots indicate census tract centroids.
Centroids for which the closest basin divide is not the central basin are excluded (light gray), as
are centroids that are more than 2km from the central basin divide. “Inside” centroids are green,
and “outside” centroids are red. Because basin boundaries are often incoherent near the edge of
the 75km disk of the dem we work with, tracts with centroids more than 69km from the city
center are also excluded from the sample.

this radial-bin maximum.
Table A1 provides a country-by-country breakout of our data. Three features

of this table are noteworthy. First, Brazil accounts for the largest share of cities in
our data by a wide margin, but the number of Colombian and Brazilian tracts in
our data is about the same. South Africa has about the same number of cities as
Colombia, but about a quarter the tracts. Jordan accounts for a small share of
cities and a smaller share of tracts. Second, the average over tracts of sewer share
is about 0.7 for Brazil and Columbia. It is about 0.8 for South Africa, 0.6 for
Jordan and about 0.08 for Tanzania.

Having defined our treatment as “share of tract households with sewer
access,” it is of interest to know what is the alternative to sewer access.
Colombia’s census question is binary. A household reports sewer access or not.
However, Brazil, Jordan, South Africa, and Tanzania each provide more detail,
although it is hard to compare “not sewered” outcomes across countries. Table
A4 organizes these data. The two main alternatives to sewer access are cesspits
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and septic tanks, respectively a hole in the ground (possibly lined) and a lined
tank in the ground. A third category consolidates “other” and “none.” For the
four countries where we can refine the not sewered category, our estimation
sample describes about 5.8m households with an average of 3.3 people per
household. Of these, about 68% have sewer access, about 28% have a cesspit or
septic tank. The remainder have no sanitation facilities, or some arrangement
other than a cesspit or septic tank.

Septic systems are fairly common in low density development in the US.
These systems consist of a septic tank and a large, highly regulated drain field.
For example, the zoning code of Lawrence County South Dakota prohibits septic
systems on lots of less than two acres.2 The high population densities observed
in our census tracts means that the septic tanks that prevail in our sample must
be quite different from those in the rural US. In all, this suggests that sanitation
for the unsewered households in our sample is primitive.

Figure 4 is a heat map illustrating the incidence of sewer access for the
Brazilian city of Cascavel. Polygons describe the extent of census tracts, with
darker blue indicating a larger share of households reporting sewer access. Basin
boundaries are black lines. Dots indicate census centroids. Census centroids are
red if they are inside the central basin, green outside, and gray if excluded from
our sample.

The Brazilian, Columbian, South African and Tanzanian censuses report
population by tract. Because we have GIS maps of tract boundaries, we can also
calculate tract area, and hence tract population density. Jordan’s census reports
only the count of households, so for Jordan we use household density in place of
population density. The Brazilian and South African censuses report on
household income. Appendix B describes how we construct our income variable
from the available census questions for these two countries. Each of the censuses
for Tanzania, South Africa, Brazil and Colombia reports some information on
educational attainment or literacy. We use these questions to create a
standardized measure of the share literate in each tract in these four countries
(see Appendix B for details).

Summing up, our data describes census tract equivalent units in Brazil,

2https://codelibrary.amlegal.com/codes/lawrencecounty/latest/lawrencecty_sd_land/
0-0-0-2364 accessed February 14, 2025.
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Colombia, South Africa, Tanzania and Jordan. We restrict attention to tracts
whose centroids are (1) within 2km of the nearest central basin divide, (2) within
69km of the city center, and fall in a radial-bin containing three or more tract
centroids. We assign sewer share, population density and other outcomes on the
basis of the relevant census survey data, and vertical distance to basin divide on
the basis of the elevation of the highest tract centroid in the relevant radial-bin.

Table 1 describes the sample on which we base our estimations. Column 1

reports on all tracts with centroids that fall in the central basin of one of the 92

cities in our sample. This column describes the cities of interest. This sample
consists of about 240,000 tracts and 4,000 radial-bins. Column 2 describes all
tracts that (1) lie within 2km, inside or outside, of the central basin divide for one
of these 92 cities, and (2) lie in a radial-bin containing at least three tract
centroids. These are the tracts we will use to estimate the effects of sewer access.
This sample consists of about 50,000 tracts and about 1,500 radial-bins. We refer
to the sample described in column 1 as the “cities sample” and to the sample
described in column 2 as the “estimation sample”.

As expected, the estimation sample is about 1km from the basin divide on
average and is about evenly split between inside and outside tracts. On average,
a tract in the estimation sample is about 12km from the cbd. Other results are
more surprising.

By construction, tracts in the estimation sample are further from the cbd than
those in the cities sample. In spite of this, mean distance to the cbd is larger in
the cities sample. There are two reasons for this. First, the table presents tract
weighted averages and cities located in large drainage basins have more tracts
that are further away. As a result, restricting to tracts within 2km of the basin
divide drops many more tracts in large basin cities than in small basin cities,
reducing the average distance to cbd when pooled across cities.3 Second, the
estimation sample excludes radial-bins containing fewer than three tract
centroids. This excludes more remote and less dense locations included in the
cities sample. Population densities are high in both samples. It is tempting to
think that this reflects city wide density. This is not correct. Because dense areas

3Within each city, the sample restriction does increase the average distance to the cbd as
anticipated.
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contain many small tracts, dense areas are overweighted in these tract averages.4

The final two rows of the table report income per month and share literate. As
described above, the income data reflects only Brazil and South Africa, and the
share literate excludes tracts in Jordan.

6 Descriptive results
Figure 5 shows empirical analogs of the elevation profile in figure 1. Each of

the three panels presents a binscatter plot of the mean bin elevation as a function
of the distance from each tract centroid to the nearest point on the central basin
divide. As in figure 1, the basin divide is at x = 0, left of zero is inside the
central basin and right outside. All three panels are based on the estimation
sample described in column 2 of table 1.

The top panel shows unconditional bin means. In this figure, the expected
high point at the basin divide is on average lower than interior tracts. In the
middle panel, we repeat the exercise using tract centroid elevations net of city
mean elevation. In this panel, we begin to see the expected high point at the
basin divide. In the bottom panel, we repeat the exercise again, but based on
tract centroid elevation net of radial-bin mean elevation. We see the expected
peak at the basin divide clearly.

This figure demonstrates three important features of our data. First, the
drainage basin divides are not dramatic geological features in two senses. First,
comparing the bottom panel of figure 5 to the panels above, we see that the
variation in elevation associated with a few km of travel perpendicular to the
basin divide is small relative to the variation across cities, or the variation within
a city as we travel circumferentially along the basin divide. Second, the bottom
panel of figure 5 also shows that the basin divides are small features in an
absolute sense. On average, traveling 2km horizontally to the basin divide,
whether inside or outside, involves a descent of about 30m. Thus, the average
grade along a 2km path extending from 2km inside the basin divide to 2km

outside is about 1:70, the grade at which athletes begin to notice a playing field

4To see the importance of this, consider a city with just two tracts: the first tract has 250 people
and geographic area = 0.01 km

2, and the second tract has 250 people and area 2km
2. Then the

average population density for the whole city is (250 + 250)/(2 + 0.1) ≈ 249 people per km
2 but

the average of the tract level densities is more than 12,500 people per km
2 ( 1

2 (
250
0.01 +

250
2 ) ≈ 12,563).
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Table 1: Descriptive statistics
(1) (2)

CBD Basin + 2KM ± 2KM Basin Divide
Cities 92 92
Mean area CBD basin (KM2) 1,371 1,371
Segments 822 500
π-bins 4,094 1,513
Tracts 239,393 50,039
Share inside 0.90 0.54

(0.30) (0.50)
Mean tract area (KM2) 0.63 0.16

(5.80) (1.25)
Mean dist to CBD (KM) 13.53 12.06

(15.04) (16.10)
Mean log dist to CBD (m) 8.95 8.71

(1.11) (1.15)
Mean dist to basin divide (KM) 11.02 0.86

(8.93) (0.59)
Sewer share 0.75 0.69

(0.33) (0.37)
Mean num people in a tract 339 427

(367) (392)
Pop density (persons/KM2) 28,379 22,348

(34,882) (27,093)
Income (per month, 2022 USD) 968 940

(921) (834)
Share literate 0.93 0.92

(0.30) (0.40)
Elevation (m) 939 288

(799) (520)

Note: Column 1 describes all tracts with centroids falling in one of the 92 central basins that make
up our sample, or less than 2KM outside. All cities lie in Brazil, Colombia, Jordan, South Africa, or
Tanzania. Column 2 describes our main estimation sample. It consists of all tracts that (1) fall
within 2KM of the central basin divide for one of the 92 cities in our sample, and (2) fall in a
radial-bin containing at least three census tract centroids. Tract mean income is based only on
tracts in Brazil and South Africa. Tract literate share data excludes Jordan.

is sloped.
Second, the peak at x = 0 visible in the bottom panel of figure 5 is by

construction. Basin divides are constructed to lie at local high points. That we
cannot see the basin divide in the top two panels indicates that when we are
comparing tracts across the basin divides, we are not making the comparisons
we intend. It is only once we control for radial-bin means that we seem to be

17



Figure 5: Mean tract centroid elevation and conditional elevation as a function of
distance to the nearest basin divide
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Note: Mean elevation by distance to basin divide; raw data (top), net of city mean (middle), and
net of radial-bin mean (bottom). On average the divide is not a dramatic feature. Figures based on
the estimation sample described in column 2 of table 1.

comparing tracts that are “close enough” together that the expected pattern in
the data emerges. This motivates our reliance on radial-bin level variation in our
estimations.

Third, whiskers in the bottom panel describe variation in elevation around
the mean, conditional on displacement from the basin divide. This is variation in
elevation holding horizontal displacement constant, exactly the variation that
our second instrument exploits. The confidence intervals around the trend line
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Figure 6: Logarithm of tract population density vs sewer share
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Note: Mean log population by tract sewer share. Log tract population density increases from
about 8.8 to about 9.8 as sewer share increases from zero to one. On average, each 1 percentage
point increase in sewer share is associated with about a 1% increase in population density. Figure
based on the estimation sample described in column 2 of table 1.

in the bottom panel of figure 5 give a sense for the magnitude of this variation.
These tight confidence intervals also indicate that most basin divides are nearly
unnoticeable features of the landscape. There are not many basin divides that
are marked by dramatic changes in elevation.

Figure 6 shows the correlation between the share of households in a tract
with sewer access and the logarithm of tract population density. The figure is a
binscatter plot, and so the slope reflects means in the raw data. Throughout most
of the range of sewer access, the relationship is approximately linear, and the
slope indicates an elasticity around one. That is, each 1 percentage point increase
in sewer access is associated with a 1% increase in population density. Because
we expect that the assignment of sewer access to census tracts is not done at
random, we cannot interpret this slope as a causal effect of sewer access on
density. Estimating this casual relationship is the central econometric problem
that we address.

Figure 7 illustrates the empirical variation relevant to our first identification
strategy. All three panels are binscatter plots reporting means for a different
variable as a function of distance to a central basin divide, net of radial-bin
means.
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For reference, the top panel repeats the bottom panel of figure 5, but with the
y-axis rescaled. Traveling away from a central basin divide means traveling
downhill, slightly. The middle panel shows changes in sewer share as a function
of distance to the central basin divide, net of radial basin means. This is a
first-stage regression. We see a trend break in sewer share at x = 0, and possibly
a small step down. This is consistent with our intuition about the costs of sewer
construction. Crossing the basin divide increases the cost of sewers and
decreases their prevalence, but the exact functional form of this relationship is
not obvious, and may be confounded by an independent effect of elevation or
horizontal displacement.

The bottom panel of figure 7 is like the middle panel, but reports bin means
of log tract population density. This is a reduced form regression. This figure is
less clear than the corresponding figure for sewer share, but population density
appears to decline outside the central basin.

Our econometric specification exploits the variation illustrated in figure 7 by
including an indicator for whether a tract is outside and the interaction of this
indicator with horizontal distance to the basin divide. The validity of these
instruments probably depends on controlling for elevation and horizontal
displacement, and we experiment with different specifications using these
controls.

Figure 8 illustrates the empirical variation relevant to our second
identification strategy. Like figure 7, both panels in figure 8 are binscatter plots.
Like the middle and bottom panels of figure 7, the y-axis of the top and bottom
panel of figure 8 reports bin means of sewer share and log tract population
density net of radial-bin means. However, the x-axis of these figures is different
from figure 7. In figure 8 the x-axis describes meters of climbing required to
reach the central basin divide. Positive x values indicate meters of climbing to
reach the basin divide for a tract on the outside of the basin, and negative x

values indicate meters of climbing to reach the basin divide for a tract on the
inside of the basin. For example, the mean sewer share is about 0.68 for tracts
that are 100m below and outside the basin divide, while the mean sewer share is
about 0.75 for tracts that are inside the basin divide and only a few meters below
it. This figure is also a first-stage regression. Looking carefully shows a clear
break in sewer share at x = 0. Mean sewer share is about 0.08 lower for a tract a
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Figure 7: Identification, z = 1(x is outside)
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Note: All panels are binscatter plots. (Top) Mean tract elevation net of radial-bin fixed effects as
a function of horizontal displacement. (Middle) Mean tract sewer share net of radial-bin fixed
effects as a function of horizontal displacement. (Bottom) Mean tract population density net of
radial-bin fixed effects as a function of horizontal displacement. Top and middle are the empirical
analogs to figure 1. All three panels are based on the main estimation sample described in column
2 of table 1.

few meters below and outside the basin divide than for a tract just below and
inside the divide.

The bottom panel of figure 8 is the corresponding reduced form. This
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Figure 8: Identification, z = 1(x is outside)×∆h
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Note: Both panels are binscatter plots. Top panel reports mean tract sewer share as a function of
vertical distance to basin divide, net of radial-bin mean. Bottom panel is mean log tract
population density as a function of vertical distance to basin divide, net of radial-bin mean. Both
panels are based on the main estimation sample described in column 2 of table 1.

binscatter plot is constructed in the same way as the top panel, but the y-axis
reports the bin mean of log tract population density. This figure also shows a
trend break and a step at x = 0.

Our econometric specification exploits the variation illustrated in figure 8 by
including an indicator for whether a tract is outside and the interaction of this
indicator with vertical distance to the basin divide, while controlling for
horizontal displacement and elevation.

7 Reduced form results
We begin by estimating the effect of the tract share of sewer access on tract

population density. To proceed, let j index census tracts and k index radial-bins.
sjk is the share, from zero to one, of households reporting sewer access in tract j
and radial-bin k. yjk is the outcome of interest, the logarithm of population
density. xjk is meters from the tract centroid to basin divide, with displacements
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inside the basin negative and displacements outside positive. ∆hjk ≥ 0 is the
vertical rise required to reach the basin divide from the centroid of tract j and
1(π-bin)jk is an indicator that is one for all tracts in radial-bin k and zero
otherwise. Finally, let 1(Outside)jk be an indicator variable that is one for tracts
with centroids outside the central basin, and zero otherwise.

Our research design requires two estimating equations. The first is a
first-stage predicting sewer share using all three (or a subset) of our instruments,
1(Outside)jk, 1(Outside)jkxjk, and 1(Outside)jk∆hjk, along with controls for
radial bin and elevation,

sjk =1(π-bin)jk + 1(π-bin)jkxjk +As∆hjk+

α01(Outside)jk + α11(Outside)jkxjk + α21(Outside)jk∆hjk + ηsjk. (1)

The second is a structural equation predicting a tract outcome as a function of
tract sewer share and controls,

yjk =1(π-bin)jk + 1(π-bin)jkxjk +A∆hjk + βsjk + ηjk. (2)

Depending on estimation technique, equation (2) is an ols estimation or a
tsls/iv regression.

These equations require several comments. First, at the parcel level, sewage
access is binary. A parcel has access or it does not. In our tract level data, we
observe the share of parcels treated. If the parcel-level causal effects are
homogeneous then treatment effects are also homogeneous at the tract level. In
this case we can interpret the coefficient of the sewage share in (2) as reflecting
the parcel level causal effect of sewer access.

Second, figure 5 demonstrates that the expected elevation profile around
basin divides is only present once we control for radial-bin fixed effects. Because
of this, all of our regressions include an indicator variable for each radial-bin.

Third, our three instruments are an indicator for outside, 1(Outside), this
indicator interacted with the distance to the boundary, 1(Outside)x, and this
indicator interacted with meters of climbing required to reach the basin divide,
1(Outside)∆h. We are concerned that horizontal displacement has a direct effect
on sewer share. Given this, we control for horizontal displacement in three
different ways. First, by including horizontal displacement as a control. Second,
by including horizontal displacement interacted with segment-bin indicators,
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Table 2: Sewers and log tract population density
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. OLS
Sewer share 0.8576∗∗∗ 0.8576∗∗∗ 0.8576∗∗∗ 0.8019∗∗∗ 0.8019∗∗∗ 0.8019∗∗∗ 0.7397∗∗∗ 0.7397∗∗∗ 0.7397∗∗∗

(0.0259) (0.0259) (0.0259) (0.0265) (0.0265) (0.0265) (0.0264) (0.0264) (0.0264)
2. First-stage
Outside -0.0078∗∗ -0.0055 -0.0051 -0.0143∗∗∗ -0.0037 -0.0049 -0.0098∗∗∗ -0.0023 -0.0046

(0.0036) (0.0040) (0.0040) (0.0037) (0.0044) (0.0044) (0.0037) (0.0047) (0.0047)
x*Outside -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
∆Elev*Outside -0.0002∗∗ -0.0001 -0.0004∗∗∗ -0.0004∗∗∗ -0.0003∗∗ -0.0002∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
3. IV log(pop density)
Sewer share 1.8205∗∗∗ 2.9299∗∗ 2.0196∗∗∗ 3.8170∗∗∗ 1.9875∗∗ 3.9573∗∗∗ 6.0387∗∗∗ 0.4847 5.9413∗∗∗

(0.3540) (1.4079) (0.3568) (0.4469) (0.8654) (0.4331) (0.6026) (1.5324) (0.5846)
4. SATE log(pop density)
Sewered 2.3389∗∗∗ 4.8942∗∗∗ 2.6074∗∗∗ 3.7429∗∗∗ 2.9344∗∗∗ 4.0004∗∗∗ 5.7074∗∗∗ 4.0916∗∗ 5.7297∗∗∗

(0.3641) (1.2770) (0.3662) (0.3681) (0.8500) (0.3562) (0.3850) (1.4261) (0.3774)

N 50039 50039 50039 50039 50039 50039 50039 50039 50039
F 93.22 6.617 63.10 84.28 19.78 62.25 73.25 5.924 50.32
Elevation Y Y Y Y Y Y Y Y Y
π-bins Y Y Y Y Y Y Y Y Y
x Y Y Y
seg×x Y Y Y
π-bins×x Y Y Y

Note: Sample is described by column 2 of table 1. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

and finally, by including the interaction of the radial-bin indicator with the
horizontal displacement, that is, 1(π-bin)jkxjk. Because we also include a
radial-bin indicator, in this final specification all of our parameter estimates are
conditional on a radial-bin specific slope and intercept.

Finally, we are also concerned that elevation has an independent effect on
sewer share and outcome, and so we also control for elevation. If vertical rise to
the basin divide is more costly outside the basin than inside, and recalling that
∆hjk ≥ 0, we expect α2 to be negative. That is, the decline in sewer share should
be more rapid as we move right from the basin divide in figure 8 than when we
move left.

Table 2 presents our main set of estimation results. The top panel gives
results of ols regressions of equation (2) with different controls. Panel 2 presents
first-stage regressions, equation (1), using different combinations of instruments
and controls. Panel 3 presents tsls estimates of equation (2) using the
instruments and controls common to other results in the same column. We
postpone discussion of panel 4. The bottom panel of the table describes the
controls used in each specification, gives the sample size, and an F-statistic for
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the instruments in the first-stage regression.
The columns are in three groups of three. The first three columns (1-3)

present results for specifications that control for tract elevation, tract horizontal
distance to the basin divide, and radial-bin intercepts. The second group of three
(4-6) allows the effect of horizontal distance to vary by segment-bin, and the
third group of three (7-9) allows the effect of horizontal distance to vary by
radial-bin. The third group of three has the most flexible controls for potential
confounding trends in horizontal distance and is our preferred specification.

Within each group of three columns, we vary the instruments that we use. In
column 1 of each set (1,4,7), our instruments are the outside indicator and the
outside indicator interacted with horizontal distance. In these regressions, causal
identification relies on changes in elevation around the central basin boundary
that results from horizontal displacement.

In column 2 of each set (2,5,8) our instruments are the outside indicator and
the interaction of vertical distance to the basin divide and the outside indicator.
In these regressions, identification relies on changes in elevation around the
central basin boundary holding horizontal distance constant. The coefficient on
these variables tells us the amount by which sewer share or log population
density decrease with each additional meter of climbing to reach the basin
divide for tracts outside the central basin. The third column of each set of three
(3,6,9) includes all three instruments.

In the top panel of table 2 we see that a 1 percentage point increase in sewer
share is associated with about a 1% increase in population density. This effect is
estimated precisely and is stable across specifications. This about matches the
pattern that figure 6 shows in the raw data. The ols specification is identical for
each of the three columns within a group, e.g., columns (1-3), because it is not
affected by changes to the instrument set.

Panel 2 presents first-stage results. Point estimates for instruments have the
expected negative signs. This confirms our intuition about the cost structure for
providing sewer service. Whether measured by horizontal or vertical
displacement, being on the outside of central basin divide increases the cost of
sewer access and decreases its prevalence. The coefficients on the two interaction
variables are stable across specifications and are estimated precisely. The
relevant F-statistic is above the threshold for conventional weak instrument tests,

25



except in columns 2 and 8. These two columns both use the outside indicator
and the outside indicator interacted with vertical displacement to the divide as
instruments. Given this, we discount estimates based on these first-stage
estimates, although we note that the weak instrument tests only apply to models
with homogeneous treatment effects.

Finally, panel 3 presents our tsls results. Ignoring columns 2 and 8,
estimates range between about 1.8 in column 1 and 6.0 in column 7. Treatment
effect estimates generally increase as we add controls. Column 9 has the most
exhaustive set of controls and is our preferred estimate at 5.94. Comparing the
tsls elasticities of panel 3 with the ols elasticities in panel 1, this suggests that
the causal effect of sewer access is between about two and six times as large as
the correlation in the raw data.

Positing that our instruments are as good as random conditional on controls,
variation in the tsls estimates is consistent with a heterogeneous treatment
effects model where different controls and instruments lead to different
weighted averages of treatment effects.

8 Instrument validity
The top panel of figure A1 provides evidence for the validity of our research

design. This panel is a binscatter plot showing mean distance to the cbd net of
radial-bin means. As expected, this plot is continuous and smooth. This is
intuitive, but not guaranteed. If we had seen a step or kink in this distance
gradient when we crossed the basin divide, it would have indicated a problem
with our sampling rule.

The bottom two panels of figure A1 describe placebo tests. There are many
places where sewer share does not vary across the basin divide. These places fall
into two categories. Those that are sufficiently undesirable that they are
unsewered on both sides of the basin divide, and those that are sufficiently
desirable that they are completely sewered on both sides of the divide. If, in
violation of the exclusion restriction, crossing a central basin divide has an
independent effect on population density, then we should see this effect in these
samples of tracts. The bottom two panels of figure A1 plot log tract population
density as a function horizontal displacement to the basin divide. In panel (b)
we restrict attention to the subset of radial-bins where tract mean sewer share is
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above 90% within 2km inside and outside of the basin divide. Panel (c) is similar,
but restricts attention to radial-bins where tract mean sewer share is below 10%
within 2km inside and outside of the basin divide. That is, panels (b) and (c) plot
how population density changes when we cross basin divides where sewer share
does not vary. These figures are noisy, but do not support the hypothesis that
basin divides affect population density independent of sewer share.

It is possible that the basin boundary is an important geological feature and
that crossing it affects sewer share and outcomes because it impedes the
movement of people and goods along with wastewater. The top panel of figure 7

(and the bottom panel of figure 5) suggests that this is rarely the case. Traveling
2km inside from an average basin divide involves a drop of only about 30m, an
average grade of about 1:70. This is suggestive, but could conceal dramatic local
variation. The whiskers in both figures describe 95% CIs of each distance bin
mean. That these confidence intervals are so tight suggests that local elevation
profiles seldom differ much from the average. Thus, the raw data suggest that
basin divides dramatic enough to impede the movement of goods and people
are rare.

To investigate the possibility that our results are driven by rare bins where
the basin divide is a dramatic geological feature, Appendix Table A2 replicates
table 3 excluding radial-bins that contain a tract whose centroid is more than
100m below the basin divide. Relative to table 3, point estimates of tsls

treatment effect and sate fall slightly in all specifications. However, in no
specification does the change of sample result in a large enough change to
coefficients that we fail to reject the hypothesis of no difference at standard
confidence levels.

It is also possible that jurisdictional boundaries follow basin divides. If so,
then crossing basin divides could affect sewer provision and population density
because it involves crossing from one administrative unit to another. In our
census data we can impute each tract’s municipality from on its census
identification code, and then check if municipal boundaries tend to follow basin
divides.5 To test the extent that municipal jurisdictions follow basin boundaries,

5For example, in Colombia the first 5 digits of the identification code for a manzana or census
block is that manzana’s municipal identification code. Similarly, for Brazil, Jordan, South Africa,
and Tanzania, we retrieve a tract’s administrative unit from the census information provided for
each country.
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we identify radial-bins where any of the tracts within 250 meters of the basin
divide are in different municipalities. In our estimation sample only 3.5% of the
radial-bins (containing 5.6% of tracts) contain municipal boundaries close to the
basin divide. Basin divides rarely coincide with municipal boundaries.

Nevertheless, to investigate the possibility that our results are driven by the
rare radial-bins where municipal boundaries and basin divides are close to each
other, in Appendix Table A3 we replicate table 3 excluding the 3.5% of
radial-bins where any of the tracts within 250 meters of the basin divide are in
different municipalities. Point estimates of tsls treatment effects fall slightly in
all specifications. However, in no specification does the change of sample result
in a large enough change to coefficients that we fail to reject the hypothesis of no
difference at 5% confidence.

9 Estimating treatment effects from aggregate data
The econometric model described by equations (1) and (2) is an instrumental

variables estimation with parametric controls and a continuous treatment. This
poses two challenges to the causal interpretation of the treatment coefficient
under effect heterogeneity.

First, Słoczyński (2021) and Blandhol et al. (2022) both investigate the
properties of the tsls estimator with linear additive covariates and binary
treatment. Both conclude that this model leads to a weighted average of
treatment effects that allows a causal interpretation only under restrictive
conditions. Indeed, Blandhol et al. (2022) argues that these conditions are so
strict as to be impossible to satisfy in practice.

Second, our problem involves a continuous (not binary) treatment. Whereas
the binary case requires that we consider only two potential outcomes, treated
and not, with a continuous treatment, we must consider a continuum of
counterfactual outcomes for each unit. Chesher (2003) and Imbens and Newey
(2009) consider the problem of estimating causal effects in a model with a
continuous treatment, although their approaches are challenging when
multi-dimensional covariates are present.

Angrist et al. (2000) and Kolesár and Plagborg-Møller (2024) study causal
interpretation of linear tsls with a continuous treatment. They show that the
tsls estimand can be interpreted as a weighted average of the marginal effects,
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although this average is difficult to interpret and not of obvious economic
interest. Furthermore, the weights can be negative for some specifications and
assumptions about the first-stage equation.

This section develops a framework for estimating the mte model with
parcel-level binary treatment using data aggregated to the tract level. We build
on the mte model of Carneiro et al. (2011) which permits the estimation of
treatment effects in instrumental variables estimations with parametric controls
and binary treatment. We start with the observation that our treatment is binary
at the parcel level, so that if we can estimate an mte model at the parcel level, we
can allow for parametric controls and parcel level heterogeneity in treatment
effects and the propensity to select sewage access.

The obvious obstacle is that our data describes census tract aggregates, not
the underlying parcel level observations themselves. We resolve this problem by
describing a small variance approximation to the parcel level mte model, and
then taking expectations of this approximation over tracts. This leads to tract
level estimating equations that identify the causal effects defined in the
parcel-level mte model. This logic requires that we take tract level averages of
non-linear parcel level equations and it leads to tract level estimating equations
that depend on the within-tract variance of the parcel level characteristics. While
we do not observe any parcel level data, our data reports within tract variances
of the controls, and so our data allows us to estimate this model to recover tract
level means of parcel level treatment effects.

We begin by stating the parcel level model. Let i index parcels and j index
census tracts. Yij is the outcome variable of interest for parcel i in tract j, Dij is
our treatment variable and takes the value one if a parcel has sewer access, and
zero if not. Xij is a vector of covariates, and Zij a vector of instruments. Let
Wij = (Xij ,Zij). Controls and instruments are the same as in the earlier tsls

estimates of equations (1) and (2).
Our parcel level mte model consists of two linear equations describing the

relationship between controls and potential outcomes,

Yij(1) = X ′
ijβ1 + Uij(1),

Yij(0) = X ′
ijβ0 + Uij(0),
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along with a parcel level selection equation,

Dij = 1{p(Wij) ≥ Vij}.

As is standard in the mte literature, the selection equation assumes additive
separability of the unobserved heterogeneity, Vij , and the latent utility term
involving Wij . Moreover, and without loss of generality, we normalize the
unobserved parcel level heterogeneity in the selection equation, Vij , to be
uniform on the unit interval. As a result, p(Wij) coincides with the parcel level
propensity to select into treatment Pr(Dij = 1|Wij).

We also impose the practical exogeneity condition of Carneiro et al. (2011),
(Uij(1),Uij(0),Vij) ⊥ Wij . This implies that unobservable heterogeneity in the
parcel level selection and potential outcome equations is statistically independent
of parcel level observables. In this case, the local iv regression is given by

Yij = X ′
ijβ0 + p(Wij)X

′
ij(β1 − β0) + ϕ(p(Wij)) + Uij , (3)

where ϕ(·) is a control function describing the dependence between
(Uij(1),Uij(0)) and Vij . The parcel level marginal treatment effect (mte)
conditional on Xij = x and Vij = v is the derivative of equation (3) with respect
to the propensity score. That is,

mte(x,v) ≡ E[Yij(1)− Yij(0)|Xij = x,Vij = v] = x′(β1 − β0) + ϕ′(v). (4)

Because Vij is uniform, the population ate is,

ate = E[mte(Xij ,Vij)] = E[Xij ]
′(β1 − β0) +

∫ 1

0
ϕ′(v)dv. (5)

Under the practical exogeneity condition, we have Xij independent of Vij so that
cate (Conditional Average Treatment Effect) given Xij is linear in Xij ,

cate(Xij) = E[mte(Xij ,Vij)|Xij ] = X ′
ij(β1 − β0) +

∫ 1

0
ϕ′(v)dv. (6)

cate(Xij) gives the treatment effect for an average unit, here a parcel, with
observable characteristics Xij .

Let σ2Rj denote the variance-covariance matrix of Wij within each tract j,
with σ2 a scaling term that we introduce to facilitate the small-variance
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approximation we describe shortly. Our data reports tract averages,
(Y j ,Dj ,W j), and σ2Rj . We discuss the calculation of σ2Rj below.

To estimate a parcel level model from tract means, (Y j ,Dj ,W j), and the
within tract variances of Wij , σ2Rj , we make three additional assumptions. First,
that the parcel level propensity score p(Wij) = Pr(Dij = 1|Wij) is three times
continuously differentiable. Second, that the third moments of Wij exist. Third,
that ϕ(p) is quadratic,

ϕ(p) = α0 + α1p+
1
2
α2p

2. (7)

Given these assumptions, Appendix C derives a tract-level regression equation
that estimates the parcel level mte model.

If we further assume a linear probability model for the propensity score,

p(Wij) = W ′
ijγ. (8)

then we can estimate the parameters (β1 − β0), α0,α1, and α2 from the parcel
level first-stage and structural equations (3) and (8), with the following two tract
level estimating equations,

p(W j) = W
′
jγ, (9)

Y j = X
′
jβ0 + p(W j)Xj(β1 − β0) + σ2(β1 − β0)k1j (10)

+ α0 + α1 · p(W j)

+
1
2
α2 · [p(W j)

2 + σ2k3j ] +Oj(σ
3) + ηj ,

where k1j and k3j are observable scalars calculated from W j , Rj and γ̂, and
Oj(σ3) is a tract level approximation error that vanishes as σ3 → 0.

Written this way, we see that these are just the original mte structural
equation estimated on tract averages, but with the addition of terms involving
the variances of tract level variables. We also see that, even though some of the
regressors involve non-linear calculations, equation (10) is linear in parameters.
Hence, assuming that the approximation error term Oj(σ3) is negligible, we can
estimate equations (9) and (10) with ols to identify (β1 − β0), α0,α1, and α2. This
lets us estimate mte(x,p) and other causal estimands by plugging these
parameters into (4) and (6).
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We obtain the tract level sample average treatment effects by averaging
cate(Xij) over all parcels in each tract j. Under the practical exogeneity
assumption this leads to the following expression for the sample average
treatment effect for a tract with mean parcel observables Xj ,

satej = X
′
j(β1 − β0) +

∫ 1

0
ϕ′(v)dv

= X
′
j(β1 − β0) + α1 +

1
2
α2. (11)

We discuss the calculation of standard errors in Appendix C.
Recall that our identification strategy relies heavily on dummy variables at

the city, segment, or radial-bin level, along with their interaction with the
horizontal distance to the basin divide. This creates two practical problems. First,
with so many regressors, our estimators are difficult to compute, particularly if
we rely on a non-linear, e.g., Logit, functional form for the propensity score p(·).
Second, the incidental parameter problem arises in the estimation of fixed effects
in nonlinear regressions; see e.g., (Lancaster, 2000). These two problems motivate
our reliance on the linear probability model, equation (9).

That we rely on a large set of controls creates another problem. The
statement of the mte model allows for treatment effects to vary with unobserved
resistance to treatment and with observed characteristics, the term
p(Wij)X ′

ij(β1 − β0) in (3). Here, the number of coefficients also increases linearly
in the dimension of Xij . Given the large number of fixed effects in our regression
equations, this specification is an extremely flexible description of treatment
heterogeneity. As a practical matter, estimates of the (β1 − β0) coefficients are
difficult to compute and unstable, and so we impose the restriction (β1 = β0) in
all of the results that we present. This restricts attention to the case where
treatment effects are heterogeneous on unobservables only.

To estimate this model, we require data describing the within tract variances
of parcel level control variables and instruments. The list of instruments and
controls that we use in our estimates of equation (2) involves just four variables
and interactions of these variables; elevation, horizontal distance, an outside
indicator, and radial-bin indicators. By construction, radial-bin indicators are
constant within a tract, and so their within tract variance is trivially zero. This
leaves elevation, horizontal distance, and the outside indicator.
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Our census data does not report any data at the parcel level. However, our
elevation data is gridded data with a spatial resolution of about 30 meters, not
much larger than a parcel. We can also evaluate the outside indicator and
horizontal distance for each grid cell in the elevation data. Finally, for all of our
census data, we have tract boundary files. Putting these data together, we can
calculate the within tract variances and covariances of all of our control variables
and instruments for the universe of tracts in our study area. To implement the
estimator described by equations (9) and (10), we use within tract calculations of
variances based on 30m grid cells to proxy for parcel values, and estimate both
equations with ols.

With these estimates in hand, we can then evaluate the satej described in
equation (11), and then average over the whole sample of tracts to get an estimate
for the average treatment effect. The resulting estimates are reported in panel 4

of table 2, along with standard errors calculated as we describe in Appendix C.
Ignoring columns 2 and 8 where the instruments are weak, the range of sate

estimates is from about 2.3 to 5.7, narrower than the about 1.8 to 6.0 range of
estimates for tsls. The sate estimates and the tsls estimates are close compared
to the precision of the estimates, particularly for our preferred specification in
column 9, and the sate estimates are marginally more precise than the tsls

estimates. Unlike the tsls estimations, the sate estimate in column 8 is not an
outlier.

While it is tempting to interpret the tsls estimations as lates, this
interpretation rests on strong assumptions, and the precise formulation of the
resulting regression weighted late is not obviously of economic interest. Our
sate, on the other hand, has a straightforward interpretation. It describes the
amount by which population density changes on an average parcel when that
parcel receives sewer access.

10 Sewers and sorting
We now investigate whether sewers also affect the demographic

characteristics of residents. This is of intrinsic interest and helps us to
understand the incidence of the benefits of sewer access. Do sewers help
incumbent residents, or do they precipitate the arrival of more affluent migrants?
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Table 3: Sewers and log tract income
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. OLS
Sewer share 0.4701∗∗∗ 0.4701∗∗∗ 0.4701∗∗∗ 0.4141∗∗∗ 0.4141∗∗∗ 0.4141∗∗∗ 0.4007∗∗∗ 0.4007∗∗∗ 0.4007∗∗∗

(0.0140) (0.0140) (0.0140) (0.0139) (0.0139) (0.0139) (0.0144) (0.0144) (0.0144)
2. First-stage
Outside -0.0100∗ -0.0193∗∗∗ -0.0191∗∗∗ -0.0170∗∗∗ -0.0155∗∗∗ -0.0165∗∗∗ -0.0150∗∗∗ -0.0148∗∗ -0.0161∗∗

(0.0052) (0.0054) (0.0054) (0.0053) (0.0060) (0.0060) (0.0054) (0.0063) (0.0063)
x*Outside -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
∆Elev*Outside 0.0005∗∗∗ 0.0005∗∗∗ -0.0001 -0.0000 0.0000 0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
3. IV log(income)
Sewer share 2.8644∗∗∗ 1.7817∗∗∗ 2.6017∗∗∗ 1.5259∗∗∗ -1.0608 1.5252∗∗∗ 0.8452∗∗ -1.9792∗ 0.8242∗∗

(0.8914) (0.4943) (0.4808) (0.4589) (0.7833) (0.4591) (0.3678) (1.1516) (0.3649)
4. SATE log(income)
Sewered 2.9623∗∗∗ 1.7721∗∗∗ 2.6010∗∗∗ 1.5356∗∗∗ -1.0600 1.5340∗∗∗ 0.6886∗ -1.7475∗ 0.6654

(0.4819) (0.4382) (0.3427) (0.3589) (0.6594) (0.3602) (0.3501) (0.7790) (0.3482)

N 25424 25424 25424 25424 25424 25424 25424 25424 25424
F 93.22 6.617 63.10 84.28 19.78 62.25 73.25 5.924 50.32
Elevation Y Y Y Y Y Y Y Y Y
π-bins Y Y Y Y Y Y Y Y Y
x Y Y Y
seg×x Y Y Y
π-bins×x Y Y Y

Note: Sample is described by column 2 of table 1, but includes only the two countries, Brazil and
South Africa, that report income in their census. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

We investigate this question in two ways. First, the Brazilian and South
African censuses report tract income directly. Thus, for these two countries, we
implement exactly the same research design that we used to understand the
effect of sewers on population density. Table 3 reports results. The organization
of table 3 is identical to table 2, except that the dependent variable in all cases is
the log of tract mean income. The top panel reports ols regressions of equation
(2). Panel 2 reports first-stage estimates, equation (1). Panel 3 reports tsls

estimates of equation (2). Panel 4 reports the sate described by equation (11).
Recalling that the dependent variable of interest is a share and the dependent

variable is a logarithm, the ols results indicate that a 1 percentage point increase
in sewer share is associated with about 0.4% increase in income. Estimates in
panels three and four are somewhat larger. In our preferred estimate in column
9, a 1 percentage point increase in sewer share causes about 0.8% increase in
tract mean income.

From table 1, we see that the mean and standard deviation of income are
both about 950 dollars. Abusing the marginal nature of our result, providing
universal sewer access to a previously unsewered tract increases income by
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Table 4: Sewers and tract literacy rate
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. OLS
Sewer share 0.0022 0.0022 0.0022 -0.0044 -0.0044 -0.0044 0.0228∗∗∗ 0.0228∗∗∗ 0.0228∗∗∗

(0.0176) (0.0176) (0.0176) (0.0183) (0.0183) (0.0183) (0.0031) (0.0031) (0.0031)
2. First-stage
Outside -0.0079∗∗ -0.0057 -0.0053 -0.0144∗∗∗ -0.0038 -0.0050 -0.0099∗∗∗ -0.0023 -0.0046

(0.0036) (0.0040) (0.0040) (0.0037) (0.0044) (0.0044) (0.0037) (0.0047) (0.0047)
x*Outside -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
∆Elev*Outside -0.0002∗∗ -0.0001 -0.0004∗∗∗ -0.0004∗∗∗ -0.0003∗∗ -0.0002∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
3. IV literacy rate
Sewer share 0.1238∗∗ -0.4413∗∗ 0.1125∗ 0.0405 0.0637 0.0616∗ 0.0288 0.0345 0.0377

(0.0600) (0.2066) (0.0596) (0.0396) (0.0828) (0.0338) (0.0331) (0.0867) (0.0317)
4. SATE literacy rate
Sewered 0.1669∗∗ -0.2995∗ 0.1620∗ 0.0442 0.0246 0.0596 0.0339 -0.0036 0.0408

(0.0628) (0.1470) (0.0633) (0.0375) (0.0698) (0.0330) (0.0315) (0.0911) (0.0304)

N 50019 50019 50019 50019 50019 50019 50019 50019 50019
F 93.22 6.617 63.10 84.28 19.78 62.25 73.25 5.924 50.32
Elevation Y Y Y Y Y Y Y Y Y
π-bins Y Y Y Y Y Y Y Y Y
x Y Y Y
seg×x Y Y Y
π-bins×x Y Y Y

Note: Sample is described by column 2 of table 1, but excludes Jordan, for which no data on
literacy or education is available. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

about 82%. This is a bit less than one standard deviation. This suggests that
sewer access has only a modest effect on the spatial distribution of income
groups across neighborhoods.

We next investigate whether sewers affect the literacy rate of tract residents.
The censuses for Brazil, Colombia, South Africa and Tanzania report on
educational attainment or literacy such that we can create a standardized
measure of the share literate in each tract. We now ask how this measure varies
with sewer access using the same approach as we use to investigate the effect of
sewer access on population density. Table 4 reports these results. ols results
suggest that literacy rates are about 0.02 percentage points higher in a tract when
the sewer share is 1 percentage point higher. iv results, in panels three and four,
suggest a smaller effect. In our preferred specification of column 9, a 1

percentage point increase in sewer share causes about a 0.04 percentage point
increase in the literacy rate, although this effect is not distinguishable from zero.

Taking the 0.04 percentage point iv estimate of column 9 seriously, providing
universal access to a completely unsewered tract increases the literacy rate by
about 4 percentage points. From table 1 the tract mean literacy rate is about 92%
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with a standard deviation of about 40%. This suggests that sewer access plays at
most a small role in spatial distribution of literacy.

Our estimates of the effects of sewer access on income and literacy do not
suggest that improved sewer access in a tract precipitates the arrival of more
affluent migrants nor the displacement of current residents. On the contrary, our
results suggest that improving sewer access in tract will provide sewer service to
incumbents or to demographically similar immigrants.

11 Discussion
Sewers and urban density

Results so far establish an effect size. Using our preferred estimate from
column 9 of table 2, adding 1% of sewer connections to a tract causes and
increase in tract population density of about 6%. It is not immediately clear
whether this is an economically important effect. We would like to develop some
intuition around this issue.

Define a “city” as consisting of all census tracts inside or within 2km of the
central basin. This is the sample of cities and tracts described in column 1 of
table 1. For each city in our sample, consider a counterfactual case where we add
1% to the count of sewer connections in the city. We add these connections, tract
by tract, by first sewering all unsewered households in the most densely
populated tract where sewer access is not universal. If completing sewer
coverage in this tract does not exhaust the 1% increase in total connections, we
move on to the next most densely populated tract containing unsewered
households, and so on, until we allocate all of the 1% of new connections.

For each city, this process results in a counterfactual city where a subset of
tracts has better sewer access than in the observed case. We can then use our
estimates of treatment effects to calculate the implied increase in population in
these tracts. Assume that the 1 percentage point increase in sewer connections
increases city population by inducing rural residents to migrate to the city, and a
6% treatment effect. In this case, mechanically, our counterfactual cities house
6% more people than their observed counterparts.

This effect seems large in the following sense. Baum-Snow (2007) finds that
each radial interstate highway decreased the density of US central cities by 9%.
Our estimates suggest the opposite effect can be accomplished by adding about
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1.5% to a central city’s stock of sewer connections. That is, a 1% increment to a
central city’s sewer share is about two thirds as important for urban form as is a
single limited access radial highway.

The increase in person weighted density is also of interest, but must be
evaluated tract by tract. We perform this calculation for all cities in our
estimation sample. Figure 9 presents a histogram summarizing our results. The
modal city in our sample experiences an about 17% increase person weighted
density, and the upper tail experiences much larger increases.

These effects also seem large. The relationship between density and labor
productivity is well established, and a central estimate is that doubling the
density of a city increases wages by about 5%. Combining this estimate with the
modal 17% increase in person weighted density that we see in figure 9, suggests
that adding 1% to the stock of sewer connections will increase wages of
incumbent residents by about 0.85%. This is a flow. Taking its discounted
present value using a 5% interest rate gives about 17% of the city’s total annual
wage bill. We suspect that this benefit alone will often be large relative to the
cost of adding the required 1% of connections. Including the likely health
benefits to incumbents and the likely wage increase experienced by rural
migrants will increase this estimate of benefits further.

CBD access and sewer access
It is now common to evaluate public transit systems at least partly on the

basis of the extent to which they improve access to the central city and thereby
improve the functioning of the labor market, e.g., Tsivanidis (2019), Zárate
(2022), Heblich et al. (2020). By facilitating higher residential densities,
improving the sewer network within walking distance of the cbd also improves
access to the cbd.

To assess the importance of this effect, we ask how many people would gain
access to the cbd if we completed the sewer network in all tracts with centroids
within 4km of the cbd, and then allowed density to adjust, keeping the total
population of the city constant. Using our same 6% treatment effect, we find that
completely sewering the area within 4km of the cbd increases the share of the
city’s population within walking distance of the center by 18% for the average
city in our sample.
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Figure 9: Histogram of counterfactual changes in density
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Note: Histogram of mean increase in person weighted density by city that results from adding
1% more sewer connections to the most densely populated tracts where access is not universal.

This 18% mean value conceals cross-city heterogeneity. Figure 10 is a
histogram of describing the magnitude of the effect. From Tsivanidis (2019), the
Transmilenio brt allows about 18% of the population of Bogota to access the
cbd. Figure 10 suggests that building out the central city sewer network has an
effect equal to or larger than that of a successful brt system in 32% of our
sample cities.

12 Conclusion
We estimate the effects of sewer access on population density in a sample of

developing world cities using a novel identification strategy that derives from
principles of wastewater engineering. We estimate that a 1 percentage point
increase in the share of tract households with sewer access causes about a 6%
change in tract population and only a small effect on the tract mean income and
literate share. This suggests that sewer construction projects impact people like
the incumbent residents and do not precipitate the arrival of more affluent
migrants.

38



Figure 10: Percentage of city population gaining walking access to the cbd when
central city sewer network in completed.
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Note: Histogram of showing the change in the percentage of city population that would gain
walking access to the cbd if all tracts within 4km of the cbd had sewer access increased to 100%
and the consequent population increase was from more remote tracts. Vertical red line at 18% is
the share of Bogota’s population that gained access to the cbd because of the the Transmilenio brt

system.

Because the treatment we consider, share of tract households with sewer
access, is continuous, the interpretation conventional tsls estimates is difficult
except under strong assumptions. To arrive at an estimand that can be
interpreted as an average treatment effect in a heterogeneous treatment effects
framework, we note that at the parcel level, our treatment is binary. This means
that a mte/liv estimation can yield estimates of parcel level average treatment
effects. We develop a technique to estimate this parcel level model from tract
level data using a small variance approximation. Thus, in addition to the
difficult to interpret tsls estimate of treatment effects, we also estimate a Sample
Average Treatment Effect of sewer access on parcel level outcomes. In practice,
both approaches lead to similar estimates of effect size. In addition to our
contribution to understanding the effects of sewers on urbanization, we hope
that this technique will prove useful to other researchers faced with similar
estimation problems.
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Finally, we perform two simple counterfactual experiments to assess whether
our estimated 6% effect size is economically important. The first of these
suggests that adding 1% to a city’s sewer connections in its densest
neighborhoods has an effect on population density about 2/3 as large and of
opposite sign as as a single radial interstate highway ray. The second experiment
suggests that completely building out the sewer network within 4km of the cbd

will increase the share of city population living in this disk by 18% on average,
and by much more in some cities. This means that building out central city
sewer access is often as important for improving access to central city labor
markets as is a successful brt system.
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Appendix A Supplemental results

Table A1: Estimation sample by country
(1) (2) (3) (4) (5) (6) (7)

Cities π-bins Tracts Share inside Tract area Pop. Density Sewer share
Brazil 55 936 22,372 0.54 0.23 17,093 0.68
Colombia 17 285 23,059 0.53 0.07 29,049 0.72
Jordan 2 4 18 0.33 1.34 1,196 0.60
South Africa 12 211 3,053 0.52 0.31 8,635 0.78
Tanzania 6 77 1,537 0.66 0.07 25,803 0.08

Note: Census data for Jordan reports households, not people. Columns (4-7) are tract weighted
averages. Population density is people per KM2 and tract area is KM2.
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Table A2: Sewers and log tract population density, dropping hilly areas
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. OLS
Sewer share 0.8000∗∗∗ 0.8000∗∗∗ 0.8000∗∗∗ 0.7604∗∗∗ 0.7604∗∗∗ 0.7604∗∗∗ 0.7063∗∗∗ 0.7063∗∗∗ 0.7063∗∗∗

(0.0258) (0.0258) (0.0258) (0.0271) (0.0271) (0.0271) (0.0269) (0.0269) (0.0269)
2. First-stage
Outside -0.0079∗∗ 0.0049 0.0041 -0.0112∗∗∗ -0.0018 -0.0030 -0.0078∗∗ -0.0047 -0.0066

(0.0038) (0.0047) (0.0047) (0.0039) (0.0051) (0.0051) (0.0039) (0.0054) (0.0054)
x*Outside -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
∆Elev*Outside -0.0007∗∗∗ -0.0006∗∗∗ -0.0004∗∗∗ -0.0004∗∗ -0.0001 -0.0001

(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)
3. IV log(pop density)
Sewer share 1.2437∗∗∗ 2.5149∗∗∗ 1.6045∗∗∗ 3.2809∗∗∗ 1.0840 3.4718∗∗∗ 5.2988∗∗∗ -5.4821 5.3133∗∗∗

(0.3312) (0.7396) (0.3126) (0.4867) (1.0356) (0.4775) (0.6095) (4.5492) (0.6089)
4. SATE log(pop density)
Sewered 1.6015∗∗∗ 3.4154∗∗∗ 2.0506∗∗∗ 3.1334∗∗∗ 1.8174 3.4180∗∗∗ 4.8707∗∗∗ -0.6425 4.9112∗∗∗

(0.3468) (0.6505) (0.3314) (0.4058) (1.0024) (0.3901) (0.4093) (2.6012) (0.4084)

N 44399 44399 44399 44399 44399 44399 44399 44399 44399
F 90.69 18.37 67.77 60.59 8.946 42.90 61.82 1.472 41.26
Elevation Y Y Y Y Y Y Y Y Y
π-bins Y Y Y Y Y Y Y Y Y
x Y Y Y
seg×x Y Y Y
π-bins×x Y Y Y

Note: Sample is described by column 2 of table 1, but excludes radial-bins containing a tract
centroid 100m or more below the basin divide. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table A3: Sewers and log tract population density, dropping municipal borders
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. OLS
Sewer share 0.8526∗∗∗ 0.8526∗∗∗ 0.8526∗∗∗ 0.7917∗∗∗ 0.7917∗∗∗ 0.7917∗∗∗ 0.7322∗∗∗ 0.7322∗∗∗ 0.7322∗∗∗

(0.0266) (0.0266) (0.0266) (0.0276) (0.0276) (0.0276) (0.0272) (0.0272) (0.0272)
2. First-stage
Outside -0.0110∗∗∗ -0.0092∗∗ -0.0087∗∗ -0.0157∗∗∗ -0.0087∗ -0.0094∗∗ -0.0157∗∗∗ -0.0089∗ -0.0108∗∗

(0.0037) (0.0041) (0.0041) (0.0038) (0.0045) (0.0045) (0.0038) (0.0048) (0.0048)
x*Outside -0.0001∗∗∗ -0.0001∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗ -0.0001∗∗∗ -0.0001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
∆Elev*Outside -0.0002∗∗ -0.0001 -0.0003∗∗∗ -0.0003∗∗ -0.0002∗∗ -0.0002∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
3. IV log(pop density)
Sewer share 1.3772∗∗∗ 0.8313 1.5311∗∗∗ 3.3969∗∗∗ 0.6798 3.7089∗∗∗ 4.9751∗∗∗ -0.3898 4.9051∗∗∗

(0.3450) (1.1370) (0.3463) (0.5949) (1.0060) (0.5886) (0.5607) (1.1567) (0.5460)
4. SATE log(pop density)
Sewered 1.8790∗∗∗ 2.4296∗ 2.0880∗∗∗ 3.3939∗∗∗ 2.0763∗ 3.8617∗∗∗ 4.6945∗∗∗ 2.6938∗ 4.7624∗∗∗

(0.3690) (1.1650) (0.3714) (0.5129) (1.0233) (0.4990) (0.3895) (1.0862) (0.3831)

N 47245 47245 47245 47245 47245 47245 47245 47245 47245
F 96.84 8.642 65.25 44.09 13.67 32.07 64.74 9.891 44.39
Elevation Y Y Y Y Y Y Y Y Y
π-bins Y Y Y Y Y Y Y Y Y
x Y Y Y
seg×x Y Y Y
π-bins×x Y Y Y

Note: Sample is described by column 2 of table 1, but excludes radial bins containing tract
centroids closer to the basin divide than 250m but in different municipalities. Robust standard
errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A1: Placebo and balance tests
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(c)

Note: Each panel is a binscatter plot with horizontal displacement from the central basin divide
on the x-axis. (a) Bin mean of distance to cbd net of radial-bin mean. That this plot is
continuous reassures us that we have not introduced an unintended sampling restriction. (b) Bin
mean population density for all radial-bins where tract mean sewer share is above 90% within
2km of the basin divide. (c) Same as (b) but for radial-bins where tract mean sewer share is below
10% within 2km of the basin divide. That population density is about constant across portions of
the central basin divides where sewer share does not vary suggests that the basin divide does not
affect population density independent of sewer share. Figure based on the estimation sample
described in column 2 of table 1.
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Appendix B Data
A. Cities

The un desa World Urbanization Prospects data (un desa

Population Division (2018)) is a census of all cities that had a population 300,000

or more in 2014. These data report coordinates for the city center – we frequently
refer to this point as the central business district. We focus attention on areas that
are both within 75km of the city center and near the boundary of the drainage
basin containing the city center.

Intersecting with the census data discussed below, we estimate treatment
effects using all cities in the un Cities data in Brazil, Colombia, South Africa,
Jordan, and Tanzania. We can also evaluate counterfactuals in these cities.

B. Sewers
Each of the countries we study provide comprehensive surveys of sewer

access at granular geographies in the 2010s. We calculate the share of households
in each census geography with sewer access and map the extent of tracts with
sewers.

The census in Brazil (Brazilian Institute of Geography and Statistics, 2012)
asks households, “Is the bathroom or toilet drain connected to the public sewer
system?” The results are reported at the setores (English: sectors) geographic unit
with counts of households affirming and total number of households in the setor.

The Colombian census (National Administrative Department of Statistics,
2018) reports counts of households indicating sewer service in response to,
“Does your house have sewage service?” This is released at different details of
granularity: in urban areas, this is available at the manzana-level (English: block,
square) correseponding to a very fine spatial detail; in rural areas, this is available
at the seccion (English: section) which is larger.

The South African census (Statistics South Africa, 2011) counts households
with sewer access using this question: “Is the main type of toilet facility used by
this household a flush toilet connected to sewerage system?” The results are
reported at a geography the Small Area Layer geography, which is between an
“enumeration area” and “sub-place.”

The census of Jordan (Department of Statistics (Jordan), 2015) asks
households, “Does your house have sanitation connected to a public network?”
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Figure A2: Locations from un Cities data in our sample

Esri, TomTom, Garmin, FAO, NOAA, USGS

Note: Data from the un desa World Urbanization Prospects (un desa Population Division,
2018), which is a census of all cities that had a population 300,000 or more in 2014. We consider
cities in Brazil, Colombia, South Africa, Jordan and Tanzania.

The Tanzanian census (National Bureau of Statistics (Tanzania), Office of the
Chief Government Statistician, 2012) reports a count of households responding
yes to, “Does your house have a flush toilet connected to a piped sewer system?”

Table A4 tabulates more detailed responses on households’ sewage disposal
for tracts used in the estimation sample from Brazil, Jordan, South Africa, and
Tanzania. Most households in the sample were connected to a sewer with
cesspits and soak pits being the most common alternative to a sewer connection.
Colombia did not provide detailed information on the type of sewage disposal at
the manzana level. For Colombian tracts used in the estimation sample, 547,101

households reported being connected to a sewer while 174,009 households were
not.
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Table A4: Households by sewage disposal type

Country Sewer Cess/soak pit Septic tank Other/none

Brazil 3,471,439 817,459 592,554 193,767

Jordan 12,273 2,924 0 150

South Africa 468,360 83,229 9,810 28,599

Tanzania 7,636 80,762 15,353 20,614

Total 3,959,708 984,374 617,717 243,130

C. Population density, other outcomes
Using the censuses described in the previous subsection, we calculate

population density and literacy measures for all countries, as well as income
measures for Brazil and South Africa. For all countries but Jordan, population
density is the full count of people divided by tract area. For Jordan, it is the full
count of households divided by tract area.

Income is measured monthly in both Brazil and South Africa. Brazil reports
the average nominal monthly income of head of household by setore. South
Africa reports counts of individuals in 12 income buckets, one of which is “no
income.” Respondents are asked to consider gross monthly income (pre-tax and
including all possible income sources). We approximate the average monthly
income for each small area by assigning each income bin the midpoint of the
income range for the same bin, then using the reported count to calculate the
mean. Colombia, Tanzania, and Jordan do not report income for the granular
geographies we use in our analysis.

Literacy is directly reported in the Brazilian and Tanzanian censuses. We do
not observe literacy directly in Colombia and South Africa. However, each of
these countries releases educational attainment data: Colombia reports a count
of persons who have completed some amount of primary school (as well as
counts for secondary, college/technical, and graduate); South Africa discloses
even more granular educational attainment data. We use completion of any
primary school, or higher, as a proxy measure for literacy in these countries. We
do not observe literacy in Jordan.
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D. Drainage basins
We construct drainage basins from two digital elevation maps (dems) using

ArcGIS tools for this purpose. The first dem derives from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (aster) (nasa/meti/aist/Japan
Spacesystems and us/Japan aster Science Team, 2019) and the second from the
Shuttle Radar Topography Mission (srtm) (NASA JPL, 2013). We rely primarily
on the aster dem, but consider srtm for robustness checks.

These data report the elevation of most of the Earth’s surface at a spatial
resolution of about 30m2. Using these digital elevation maps, we draw all
drainage basins within a 75km radius of the center of each city using a utility
available for this purpose as part of ArcGIS. We identify the drainage basin
containing the center of each city using coordinates in the un desa World
Urbanization Prospects data. These are the central basins, and our research
design is organized around comparisons of neighborhoods on opposite sides of
the boundaries of these basins.

Figure 3 illustrates basin boundaries for Cascavel, Brazil. This is an empirical
analog of the basins drawn in figure 2. In figures 3, black lines indicate the
boundaries of drainage basins. Both dems are constructed by looking down at
the Earth’s surface from satellites, and so both sometimes confuse treetops and
roofs with ground level. Because ground level elevation is what is relevant for
our exercise, this raises the possibility that we mismeasure basin boundaries.
aster is based on longer wavelength radiation that is better able to penetrate
treetops and roofs, and so is a better measure of ground level elevation. Thus,
the aster data is our primary basis for constructing drainage basin boundaries,
and we rely on the srtm data primarily for robustness checks. A comparison
with lidar data shows that average error of aster is about 4m in four small
study areas. srtm is about the same. (Uuemaa et al., 2020).

Appendix C Small variance approximation of the MTE model
Our data reports tract averages, (Y j ,Dj ,W j), and the variance of Wij within

each tract j. Using these data, we write parcel level variables as the sum of tract
averages and residuals:

Wij =

[
Xj + σϵXij
Zj + σϵZij

]
= W j + σϵij ,
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where σ2 is a scaling factor for the residuals, and ϵij = [ϵXij ,ϵZij ] is a vector of
residuals such that the within-tract means satisfy E(ϵij |j) = 0 and the tract level
variance-covariance matrix for ϵij , V ar(ϵij |j) = Rj exists. Accordingly, we can
express V ar(Wij |j) as

V ar(Wij |j) = ΣW ,j = σ2

[
RXX
j RXZ

j

RXZ
j RZZ

j

]
. (Appendix C.1)

Assume that the parcel level propensity score p(Wij) = Pr(Dij = 1|Wij) is
three times continuously differentiable. Then the second-order Taylor expansion
of p(Wij) with respect to σ around σ = 0 is,

p(Wij) = p(W j) +∇p(W j)σϵij +
σ2

2
ϵ′ij∇2p(W j)ϵij +O(σ3∥ϵij∥3).

(Appendix C.2)

In this equation, ∇p(Wij) denotes the 1 × dim(Wij) vector of partial derivatives
of p(Wij) with respect to Wij evaluated at Wij , ∇2p(Wij) denotes the
corresponding Hessian matrix, and O(σ3∥ϵij∥3) is the residual of the expansion
that vanishes as σ3∥ϵij∥3 → 0.6 Taking the expectation conditional on i being in
the tract j, we have

pj ≡ E[Dij |j] = E[p(Wij)|j] = p(W j) +
σ2

2
E
[
ϵ
′
ij∇2p(W j)ϵij

∣∣∣ j]+Oj(σ
3)

= p(W j) +
σ2

2
tr
(
∇2p(W j) ·Rj

)
+Oj(σ

3),

(Appendix C.3)

where we let Oj(σ3) ≡ E[O(σ3∥ϵij∥3)|j], invoking the assumption of finite
third-order moments of ϵij . The term ∇p(W j)σϵij drops out because E[ϵij |j] = 0.

We observe Dj , the share of households in tract j with sewer access. This
measures pj . We also observe W j , and ΣW ,j = σ2Rj . Therefore, given a
functional form for the propensity score p(·) and using the tract level
observations, we can use (Appendix C.3) to approximately estimate the parcel
level propensity score function p(·), where the approximation error is a higher
order term of σ than the variance σ2.

6Equation (Appendix C.2) shows the advantage of the representation of ΣW ,j in equation
(Appendix C.1). By introducing the scaling factor σ2, we facilitate a univariate Taylor series
expansion in (Appendix C.2). The same comment applies to equation (Appendix C.5) below.
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We now consider the local iv regression (3). Substituting equation
(Appendix C.2) into (3) gives,

Yij = X
′
ijβ0 +

[
p(W j) +∇p(W j)σϵij +

σ2

2
ϵ
′
ij∇2p(W j)ϵij +O(σ3∥ϵij∥3)

]
(Xj + σϵXij )

′ · (β1 − β0)

+ ϕ

(
p(W j) +∇p(W j)σϵij +

σ2

2
ϵ
′
ij∇2p(W j)ϵij +O(σ3∥ϵij∥3)

)
+ Uij .

(Appendix C.4)

Next, we take a second-order Taylor expansion of ϕ(·), take the conditional
expectation given i belonging to tract j as in (Appendix C.3), and finally, absorb
higher-order terms in Oj(σ3). This gives,

Y j = X
′
jβ0 + p(W j)Xj(β1 − β0) + σ2

[
∇p(W j)R

WX
j +

1
2
tr
(
∇2p(W j) ·Rj

)
X

′
j

]
(β1 − β0)

+ ϕ(p(W j)) + ϕ′(p(W j))
σ2

2
tr
(
∇2p(W j) ·Rj

)
+ ϕ′′(p(W j))

σ2

2
∇p(W j)Rj(∇p(W j))

′ +Oj(σ
3) + ηj , (Appendix C.5)

where RWX
j = E[ϵijϵX ′

ij |j] =
[

RXX
j

RXZ
j

]
is a submatrix of Rj .

Finally, assume,

ϕ(p) = α0 + α1p+
1
2
α2p

2. (Appendix C.6)

Using parameter estimates from equation (Appendix C.3) we can evaluate p(W j)

and its derivatives at W j . This means that we can define three observable scalars,

k1j ≡
[
∇p(W j)R

WX
j +

1
2
tr
(
∇2p(W j) ·Rj

)
X

′
j

]
k2j ≡ tr

(
∇2p(W j) ·Rj

)
k3j ≡ ∇p(W j)Rj(∇p(W j))

′.

Substituting into the structural equation (Appendix C.5), we have

Y j = X
′
jβ0 + p(W j)Xj(β1 − β0) + σ2(β1 − β0)k1j (Appendix C.7)

+ α0 + α1

[
p(W j) +

σ2

2
k2j

]
+ α2

[
1
2
p(W j)

2 + p(W j)k2j +
σ2

2
k3j

]
+Oj(σ

3) + ηj .
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We arrive at equation (9) and (10) in the main text by assuming the linear
probability model, equation (8), in both (Appendix C.3) and (Appendix C.7),
noting k2j = 0, and including approximation error in the regression residual.

Our estimand of interest is the sate. In this case it is given by,

sate = X
′
(β1 − β0) + α1 +

1
2
α2, (Appendix C.8)

where X is the sample average of Xj . We estimate sate by plugging in the ols

estimator of the relevant coefficients obtained from (Appendix C.7).
To obtain a standard error estimate for our sate estimator, we express our

estimation of γ and (α,β) using method of moments. Denote the regressor vector
(column vector) of equation (Appendix C.7) by,

Sj(γ) =
(
X ′

j , (W ′
jγ) ·X ′

j + σ2γ′RWX
j , W ′

jγ, 1
2(W

′
jγ)

2 + σ2

2 γ′Rjγ
)′

and the coefficient vector by θ = (β ′
0, β ′

1 − β ′
0,α1,α2)

′ with α0 absorbed into the
intercept parameter. Then (θ,γ) is the solution to

E

[
Sj(γ)(Y j − Sj(γ)′θ)

mj(γ)

]
= 0, (Appendix C.9)

where mj(γ) is the first-order condition for γ in the ols estimation of (8).
Substituting sample analogs gives our estimators,

1
n

n

∑
j=1

[
Sj(γ̂)(Y j − Sj(γ̂)′θ̂)

mj(γ̂)

]
= 0. (Appendix C.10)

If we now expand the sample moment conditions around the true parameter
values, (θ, γ), we have

0 =
1
n

n

∑
j=1

[
Sj(γ)(Y j − Sj(γ)′θ)

mj(γ)

]
+

(
∇̂1,θ ∇̂1,γ

O ∇̂2,γ

)
·
(
θ̂− θ

γ̂ − γ

)
+ remainder,

(Appendix C.11)

where ∇̂’s are the derivative matrices of the sample first order conditions.
Multiplying both sides by

√
n, solving for parameters, and letting n → ∞, we

obtain the following asymptotic approximation;

√
n

(
θ̂− θ

γ̂ − γ

)
= −

(
∇1,θ ∇1,γ

O ∇2,γ

)−1

· 1√
n

n

∑
j=1

(
Sj(γ)(Y j − Sj(γ)′θ)

mj(γ)

)
→d N (0,∇−1Σ(∇−1)′), (Appendix C.12)
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where

∇ = E

(
−Sj(γ)Sj(γ)′ ∇γSj(γ)ηj − Sj(γ)θ′∇γSj(γ)

O ∇γmj(γ)

)
(Appendix C.13)

= E

(
−Sj(γ)Sj(γ)′ −Sj(γ)θ′∇γSj(γ)

O ∇γmj(γ)

)
. (Appendix C.14)

The second equality holds because ηj is a regression residual with mean zero
conditional on the regressors in (Appendix C.7). Σ is the variance covariance
matrix of the moment conditions.

Σ = E

[(
Sj(γ)(Y j − Sj(γ)′θ)

mj(γ)

)
·
(
Sj(γ)(Y j − Sj(γ)′θ)

mj(γ)

)′]

If we specify the linear probability model for (8), then we have
mj(γ) ≡ Wjνj = Wj(Dj −W ′

jγ), and ∇γmj(γ) = −WjW
′
j . Under the same

assumption, the derivative matrix of Sj(γ) is

∇γSj(γ) =


Odim(X)×dim(γ)

XjW
′
j + σ2(RWX

j )′

W ′
j

(W ′
jγ)W

′
j + σ2γ′Rj

 .

We estimate the asymptotic variance of (Appendix C.12) by plugging in γ̂ in
place of γ and replacing the expectation by the sample average for both ∇ and Σ

terms,

∇̂ =
1
n

n

∑
j=1

(
−Sj(γ̂)Sj(γ̂)′ −Sj(γ̂)θ̂′∇γSj(γ̂)

O ∇γmj(γ̂)

)
,

Σ̂ =
1
n

n

∑
j=1

(
Sj(γ̂)(Y j − Sj(γ̂)′θ̂)

mj(γ̂)

)
·
(
Sj(γ̂)(Y j − Sj(γ̂)′θ̂)

mj(γ̂)

)′

Focusing on the first block element of ∇̂−1Σ̂(∇−1)′ gives the asymptotic
variance estimate for

√
n(θ̂− θ).

Since the sate estimator can be expressed as âte = a′θ̂ with a = (0′,X ′, 1, 1)′,
its asymptotic variance can be obtained by the asymptotic variance of θ̂
sandwiched by a′ and a.
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